Geehy

SEMICONDUCTOR

Application Note
Document No.: AN1166
G32R430 DDL SDK Quick Start Guide

——Based on G32R430TinyBoard

Version: V1.2

Document No.: AN1166 SEMlguuecmR y

1 Introduction

This application note aims to help you quickly understand and apply the G32R430 DDL SDK, as
well as the development process based on the G32R430TinyBoard. By reading this note, you will
become familiar with common hardware resources and the SDK directory structure, and learn
how to run sample programs in the MDK, IAR and Eclipse environments. This will help you quickly
complete preliminary evaluation and application development for the G32R430 series chips.

Before starting, please prepare the following environments and tools:
1. Windows 10 or above operating system

2. G32R430 DDL SDK Vx.x.x

3. Keil MDK 5.40 or above version

4. 1AR for ARM 9.60.2 or above version

5. Eclipse 4.35 or above version

6. xpack-windows-build-tools 4.4.1

7. LLVM-ET-Arm-19.1.1-Windows-x86 64

8. arm-gnu-toolchain-14.2.rel1-mingw-w64-x86_64-arm-none-eabi
9. PyOCD 0.36

10. G32R430TinyBoard V1.2

11. USB Type-C data cable

www.geehy.com Page 1

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

2.1

2.2

4.1
4.2

4.3

5.1
5.2
53
54

55

6.1
6.2

6.3

7.1
7.2
7.3

7.4

www.geehy.com

Contents
INErOAUCHION ..o e e e e e e e e s bareeaeeeeas 1
Basic Information of G32R430TinyBoardcccoo oo 3
Introduction to Development BOard RESOUITEScueivivieicieierrieteieieersnrrerteessessnreeseeessessnsesseesssesssnses 3
PrECAULIONS .ot a e 4
Introduction to SDK Directory Structureccccco oot 5
How t0 RUN EXAMIPIES ...t e e e et ee e e e e 6
Running EXamples in K&l IMDKoooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee ettt ettt e e e et e e e e e e rer e e e e e ae e 6
RUnning EXamples in TAR FOr AT oottt e e e e e ee e 9
RUNNING EXGMPIES IN ECHPSE .cociiiiiiiiiiiiiiieieeeeeeeeeeet ettt e e e e e e eaeees 11
PYOCD INStallation ... 20
L T Lo Lo AT TSP PR PURT R OPRPRROPI 20
U o T o PP TR 21
Replace Modified IHEM CONTENTocii ittt s e s tr e e e e s s sante e e e e e s sessnsnnneeesensnsnsns 23
COMMEAN LINE U S ZE .. ittt sttt et e et ie et et et et et et et et et et e e e eeeeeeeeeetereraeaeasaes 23
INEEEIatioN WIth ECIIPSE c.cociiiiieiiieieeeeee ettt e e e e ae e e 24
ADBOUL LINKEr SCHIPL.......ooiiiiiiiiii e 26
Basic INformation of LINKEr SCrIPL......ooiiiiiiiieieeeeeeeeeeeeee ettt e e 26
(o] o I D T<TY ol o] o o SRS SSRPRR 26
How to Specify Variable/FUnCLion STOTaZE AlBa......cccvciiiiieeeiriieeeienreesssreessrsreessssnsesssssesssssseessssnes 27
ATANZ LIDIrari@soooiiiiiiiiiie ettt e e e e e bbb e e e e e e e e e bebaeeaaaeaeas 28
ATANZ LIDrary File SErUCTUIE ...vvveieiei ettt re e sretereee e s e ssesssnaeeeesessssssnsnasesssssssssssesesssarsssssneseessarsssssnns 28
Function Prototype and DEeSCIIPLIONoviiiiiiiiiiiiiiiieeteeeeeeeeeeeeeeeeeeeeee ettt e e e 28
Function Storage and EXeCUtion LOCALION ...cccoiiiiiiiiiiiiiiiiiicicieieeceeeeteteeeeeeeeeeee ettt 28
LU =IO EPTPPPTIN 29
ReVISION HISTOIYcooiiiiii e 30

Page 2

http://www.geehy.com/

Document No.: AN1166 ssmlgnugroa y

2 Basic Information of G32R430TinyBoard

This section provides an overview of the G32R430TinyBoard, so that users can quickly
understand and correctly use the G32R430TinyBoard’s on-board functions and resources,
thereby preparing for subsequent development in the MDK, IAR and Eclipse environments.

2.1 Introduction to Development Board Resources

The G32R430TinyBoard is a development board based on the G32R430 series MCU. It features
rich on-board resources, and meets the needs of users from beginners to those with certain
development experience for rapid evaluation and development. The following are the commonly
used resource configurations and interface description for this board:

Figure 1 G32R430TinyBoard

;
i
:
i

2xLED: LED1 (PA1), LED2 (PA2)
2xkeys: User Key1 (PA5), Reset key
1xUSART: USART2_TX (PDO0) / USART2_RX (PC12)

1x]2C EEPROM: SCL1 (PD5) / SDA1 (PD9), ZD24C64A-XGMT chip

® 1xRS-485 interface: USART1_TX (PB9) / USART1_RX (PB6) / USART1_DE (PB11)
® 1xRS-422 interface: CLK (PC9) / MISO (PD2)

® 1xon-board GEEHY-LINK emulator:

- Implements serial communication with the G32R430 chip via the on-board emulator’s
TX and RX.

- Supports download and debugging.
www.geehy.com Page 3

http://www.geehy.com/

Document No.: AN1166

2.2 Precautions

1. If ports such as A1, A2, and A5 on the J12 interface need to be used, the jumper cap on J10
needs to be transferred from the default LED1, LED2, KEY positions to A1, A2, A5
respectively. This ensures that the actual available pin resources correspond to the target
functions.

Figure 2 From Default LED1, LED2, KEY Resources to A1, A2, A5

2. If an external emulator needs to be connected, first disconnect the electrical connection
between the on-board GEEHY-LINK emulator and the board (e.g., by physically separating
the emulator from the board).

www.geehy.com Page 4

http://www.geehy.com/

Document No.: AN1166

3 Introduction to SDK Directory Structure

The G32R430 DDL SDK provides comprehensive development support from drivers and core
libraries to example projects, making it easy for users to get started quickly and make secondary
development. Its general directory structure is as shown in Figure 3.

Figure 3 Introduction to G32R430 DDL SDK Directory Structure

~ G32R4XX_DDL SDK VX.X.X
~ Boards
» Board_G32R430 _TINY < Board support files

board.c
board.h

~ Documents
DATASHEET.pdf
G32R430:x_um.chm

» Examples' Board G32R430 Tiny < Examples for different
~ Libraries development boards
> ATANZ < ATAN2 library
» CMSIS
» Device < Device header files, startup files, and linker script files
» G32R4xx_DDL_Driver < DDL library driver
v Middlewares Middleware
» coremark
» dhrystone
~ Package
» FLM
2 SVD

G32R4300_AddOn_v1.0.0.exe AR chip support patch package
Geehy.G22R4xx DFP.1.0.0.pack e Kejl-MDK chip support package
GEEHY COPYRIGHT MOTICE.txt
Motice.brd

-

Readme.pdf < SDK introduction files

Release Motestxt

Note: For more details about the SDK, please review the Readme.pdf file located in the SDK root directory.

www.geehy.com Page 5

http://www.geehy.com/

Document No.: AN1166 sleguuecmR y

4 How to Run Examples

To help users get started quickly and verify the board and SDK functions, the SDK provides
example projects in both the MDK, IAR and Eclipse environments. The following will respectively
introduce the preparatory work that needs to be done in these development environments, as
well as how to compile, download and debug the example projects.

4.1 Running Examples in Keil MDK

4.1.1 Install the Chip Support

Use the "Packlinstaller.exe" on the MDK configuration interface to install by importing the Pack,
which avoids lags or exceptions that may occur during double-click installation.

Figure 4 Using Packinstaller to Install Geehy.G32R4xx_DFP.x.x.x.pack

[e2) 7 Installer - C:\Arm543\Packs
[Eile | Packs Window Help

| Refresh ?
[import.. @) Import Packs x |2

Import from Folder... [
Manage Local Repositories.. « « 4 || « G3?R430_DDIL_SDK V040 > Package v | o @ Package" |
Settings.. F
: mR v FETMS - W @ L ﬂ
Exit .
+ % Active-Semi 17 Devices N ER E=id) Fsing |
4 % Alif Semiconduc... | 18 Devices M pndu
%@ Ambiq Micro 22 Devices . erch
« @ Amiccom 5 Devices r Alif
- [[Geehy.G32R4xx DFP.1.0.0.pack PACK Szf% E
% Anslog Devices | 18 Devices Erche
. @ APEXMIC 23 Devices Freef
o @ ARM 52 Devices fken |
“ % BrainChip 1 Device dde:
. % Cmsemicon 101 Devices fCort
@ Cypress 172 Devices fSofty
% @ Dialog Semicond...| 20 Devices fm Cc
o @ ELAN 1 Device]
5@ FMD 50 Devices hics §
@ FMSH 11 Devices |
. @ Geehy 166 Devices by
#. @ GigaDevice 388 Devices [and ¢
- @ HDSC 131 Devices v < > ki
¥ % Himax 2 Devices Hient
+. % Holtek 464 Devices STEE(N): | Geehy.G32R4w DFP.1.0.0.pack v| Software Pack - PACK ("zip:' ~| [c ot
« @ Infineon 1546 Devices \4 i Eejj
e ® Maxim 19 Devices v
"Dutput . 2%
{Refresh Pack descriptions
Ready OFFLINE

How to open Packlnstaller.exe:
® Method 1: Click the "Pack Installer" icon on the MDK status bar.

® Method 2: Run the Packlnstaller.exe from the MDK installation directory, e.g.,
C:\Users\Geehy\AppData\Local\Keil_v543a\UV4\Packinstaller.exe.

Note (1): MDK version must be = v5.40. It is recommended to use MDK v5.43a to ensure compatibility and stability.

Note (2): For MDK v5.43a, double-click to install the Package\Geehy.G32R4xx_DFP.x.x.x.pack chip support package
in the SDK root directory. Abnormal lag may occur, which indicates MDK is abnormal

www.geehy.com Page 6

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

4.1.2

4.1.3

4.1.4

Use an Example Program

Open the MDK project directory for the corresponding board. Taking the ADC12 module as an
example, the path is as follows:

Board G32R430_Tiny\ADC12\ADC12_AnalogWindowWatchdog\Project\MDK

In this directory, find the .uvprojx file and double-click it to load the example project.

Figure 5 ADC12_AnalogWindowWatchdog MDK Project Diagram

Board_G32R430 Tiny » ADC12 » ADC12_AnalogWindowWatchdog » Project » MDK

#

R Enash = A
KA ADC12_AnalogWindowWatchdag.uvp... 2025/11/7 11:01 #Vision5 Project 24 KB

Compile the Program

After opening the project, check if the project target configuration is the desired one. Click the
Compile button and wait for completion. If there are no errors, MDK will display "O error, O
warning" in the output box.

Figure 6 Multi-Target Selection and Compilation in MDK

£ | ¥4 | [c32r430_RAM |.3°;‘~| d = ¢ D@

Project We G32R430_FLASH

G32R430 RAM

Download the Program
Select the emulator type as "CMSIS-DAP ARMv8-M Debugger".

Figure 7 Selecting an Emulator in MDK
e “ @

KA Options for Target 'G32R430 FLASH' *
2
Device] Tarzet] Output] Listing] Tser] C/C++ (ACE)] hsm l Linker lities]

" Use Simulstor ~ #ith restrictions Seffings | (% Use: |CMSIS-DAP ARMv8-M Debugg v | Settings |

[~ Limit Speed to Real-Time ULINKplus Debugger
J-LINK # J-TRACE Cortex
S _ ST-Link Debugger .
[v Load Application at Startup v Run to main() v Load NULink Debugger b main{)
Initialization File: Inttializatid Pemicro Debugger
J ’— ULINK Pro ARM\:E—M Debugger
Restore Debug Session Settings Restorg
(3 Do alemmicdn 3 Toanlbno 3 Do alommicdn I3 Tanlbno

Configure the download content in MDK's "Flash Download" as needed.

www.geehy.com Page 7

http://www.geehy.com/

Document No.: AN1166

Figure 8 Configuring Flash Download Content

%]
Device | Target | Output | Listing| User | C/C++ (A6} | Asm

1
\Limrnies}

(" Use Smulator with restrictions Seftngs | | @ Use: [CMSIS-DAP ARMyEM Debugg ~| [Seftings I

Add Flash Programm

Beb | Troce [Pt o)

ing Algorithm

[Descrption

| Rash Device Type

Download Function G32R430 128KB Rash

LifD " Erase Ful Chip ¥ Program

RAM for Algorthm

i

Size |
o Cn-<hip Flash

5 e fash 16bx
o+ A Stant:[320000000 Size: [3x00007000 B e Dol Fish e e
i (W Frsieniin LPC 1800430 MX25VBU35F. & Bxt Flash Pl MOK Core
) LPC180u/430 526FL032 5P an Bdt Flash Pl MOK Core
Frogramming Algorthm LFC 180430 S25FL064 SP am Exd. Flash SFI MDK Core
Description | Device Sze | Device Type | Address Range | tggg;&m;ﬁgﬂ?& ?;‘\EI 145":4 EE:: Eﬂ-‘i: SE} mgﬁ gﬂfﬁ
s ore
G32R430 128KB Flash 128 Onchip Flash 08000000 - 0601FFFFH vt o L flash oPL - MOK Core
MIMXRT105 EcoXP Flash a Bd. Flash Pl MOK Core
RC28F640.3: Dual Fash 6M Be.Amsh32be MDKCor
525FL1285 V2C 16M Bt Flash SPI MOK Core
525GLOSAN Dual Flash 16M Bt Fash 326t MOKCor
4 523JL032H_BOT Flash am Bit. Alash 166t MOK Core
S 500020000 523JL032H_TOP Flash am Bit. Alash 166t MOK Core

‘c \Am543\Packs"Geehy’

5

\G32Rdx_DFP1.0.0\Flash\G32R430_OPT FLM

Add Cancel

Help

Including:

Note: The download area must not overlap with the RAM area used to execute the download algorithm; otherwise,

the download algorithm will fail to run properly.

4.1.5 Debug the Program

In the debugging configuration, set the .ini script file (if the program's run address differs from the
chip's boot address) to ensure the PC Program counter i

For .ini script file, see G32R430 _DDL_SDK Vx.
ATAN2\ATANZ2_Math\Project\MDK\itcam_ram.ini

Figure 9 Configuring .ini File in

[tteam_ram.ini

unsigned int S
\DDR = - dx 000000

I Options for Target 'G32R430 RAM'

" Use Simulator ~ with restrictions Settings

I Limt Speed to Real Time

I¥ Load Application at Startup
Initialization File:

¥ Runto mainf)

B[=

Restore Debug Session Setings
¥ Ereakpoirts ¥ Toobox
[Wiatch Windows & Performance Analyzer

¥ Memory Display ¥ System Viewer

CPUDLL:

Dialog DLL:

Parameter:

Parameter:

OPT code download settings (if it is necessary to write to the emulated OTP/configuration area).
Steps 5, 6, 7 in Figure 8 need to be additionally executed to add the OPT download algorithm.

RAM program download settings (if it is necessary to run the program in RAM). Then, in Step 4
of Figure 8, change the programming area to the download area and skip Steps 5, 6, 7.

MDK

1
Device | Target | Output | Listing| User | C/C++ (AD6) | Asn | Linker ihn‘es}

* Use: [CMSIS-DAP ARMvE-M Debugg | Settings

[¥ Load Application at Startup ¥ Run to pain()
Iritalization Fis
Edt.. |

Restore Debug Session Settings

¥ Toolbax
[Tracepaints
¥ System Viewer

¥ Breakpoints
I Watch Windows
¥ Memory Display

Driver DLL: Parameter:

SARMVSM.DLL |-MPU -PACBTI

Didlog DLL: Parameter.

™ Wam if outdated Executable is loaded

Manage Component Viewer Description Files ..

[TcmbLL

[sCH52

[Wam if outdated Executable is loaded

]

Camer

21

Defaults ‘ Help

Click "Debug" to enter the debugging interface, where you can view:

www.geehy.com

s initialized to the correct start address.
x.X \Examples\Board_G32R430_Tiny\

http://www.geehy.com/

<

Document No.: AN1166 SEMICONDUCTOR

® General-purpose registers (content of general-purpose CPU registers).

® Core and peripheral registers (register configuration and status of each peripheral
module).

Figure 10 Viewing Peripheral Registers in MDK Debug Interface

lew Project Flasn Debug | Perpherals Tools SVCS Window Help

e Edt Vi
@ Syster 3 anc » V| apcr onstruci] A o | R-| @ 0 & @&-| @-| A
B BP0 % & CoePeiphesls b = Aoz
—————— comr oy
Regiters 3 B Disassemoy - [

-
o

oAC »

oMa

4.2 Running Examples in IAR for Arm

4.2.1 Install the Chip Support

should match the path of the locally installed IAR. For example, if the IAR startup program on the
demonstration PC is located at D:\iar\ewarm-9.60.2\common\bin\larldePm.exe, set the
installation path to D:\iar\ewarm-9.60.2.

Figure 11 G32R430xx_AddOn_vx.x.x.exe Installation Program

B Geehy G32R430xx Device AddOn Package to IAR 1.0.0 ... — X
Destination Folder
Select the file directory for installation {IAR installed file directory) .

This AddOn will install into the following product folder. To install to this folder press
'Instal'.To install to a different folder,press '‘Browse’ and select another folder.

Destination Folder

| D:Yar\ewarm-9.60.2 Browse...

Space required: 915.0 KB
Space available: 77.1GB

< Back Cancel

4.2.2 Use an Example Program

Open the IAR project located in the same directory as the example project. For example:
Board_G32R430_Tiny\ADC12\ADC12_AnalogWindowWatchdog\Project\IAR

In this directory, double-click the .eww file to load the example project.

www.geehy.com Page 9

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

Figure 12 ADC12_AnalogWindowWatchdog IAR Project Diagram

Board G32R430 Tiny » ADC12 » ADC12 AnalogWindowWatchdog » Project » IAR

#

=t EHE R =3 Fh
| | ADC12_AnalogWindowWatchdog.ewp 2025/11/7 11:01 EWP Izt 48 KB
> ADC12 AnalogWindowWatchdog.eww — 2025/11/7 11:01 AR IDE Worksp... 8 KB

4.2.3 Compile the Program

After opening the project, the project structure can be viewed in the IAR’s Workspace. Check if
the project target configuration is the desired one, then click "Make" or the corresponding compile
button and wait for the project to complete compilation. If compilation is successful, the Console
will display no errors or warnings.

Figure 13 Multi-Target Selection and Compilation in IAR

File Edit v Project CMSIS
LI

‘Workspace

G32R430_FLASH
G32R430 RAM

4.2.4 Download the Program

In the debugger option, select to use “CMSIS-DAP ARMv8-M Debugger”. Then, click the "Project"
button in the status bar and select "Download active application" under "Download" to download
the program.

Figure 14 Configuring Emulator and Downloading Program in IAR

> ADC12 AnslogWindogchdag - IAR Embedded Warkbench IDE - Arm 8.60.2

DC12_A1
= i

Rebuild Al R Faclory Settngs
Clean
C-STAT Static Analysis.
Plugins
Muliicore

Third-Party Driver
T MSP-FET
T xDs

www.geehy.com Page 10

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

4.2.5 Debug the Program

Click "Download and Debug" to enter the emulation and debugging environment. At the first time,
an emulator selection interface will pop up; then select the first one. For more operations, please
refer to Figure 15.

Figure 15 Viewing Peripheral Registers in IAR Debug Interface

7 Debug Probe Selection

Please select one of the folaing found probe(s)

P | <

CCSTEP

The followings can be viewed in the debug windows:
® General-purpose registers (e.g., RO, R1 ... R12, SP, LR, etc.).

® Core and peripheral registers (used to view peripheral initialization and status of the
chip).

4.3 Running Examples in Eclipse

4.3.1 Toolchain Installation

1. Eclipse version requirements: Ensure you are using Eclipse 4.35 or a later version of the
IDE.

2. LLVM_For_ARM_Toolchain

a) Download LLVM_For_ARM_Toolchain compiler from the LLVM_For_ARM_Toolchain
repository: https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm.
Download LLVM-ET-Arm-19.1.1-Windows-x86_64 compiler.

b) Add environment variables.

® Decompress the downloaded package (example decompression path:
D:\desktop\clang\utilities\LLVM-ET-Arm-19.1.1-Windows-x86_64)

® Add the bin folder in the folder to the system environment variables.

www.geehy.com Page 11

http://www.geehy.com/
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm

Document No.: AN1166

3

)

Figure 16 Add system environment variables

Chxpack-windows-build-tools-4.3.0-1-win32 -x6d\xpack-window...
CAGCCV0 2021.100bin

Ch\Program Files\Git\crmd

CAProgram Files\TortoiseSVINYbin

CAProgram Files\MATLAB\R2022a\runtime\winad

CAProgram Files\MATLAB\R2022a\bin
Di\desktop\clang\utilities\LLVM-ET-Arm-19.1.1-Windows-x86 _6&... |

3. GDB Service. It is recommended to use arm-none-eabi-gdb.exe provided by Arm. The arm-

none-eabi-gdb.exe version used in the example is 14.2.

4. Make tool. It is recommended to use xpack-windows-build-tools, and the example uses

version 4.4 1.

The above toolchain can be configured into the global Path of Eclipse. Refer to the diagram for

[Window #=Ip
New Window - ms, Lt
) 2 Preferences mI i
il : . @ Build
Appearance > || [type fiter text Global Arm Toolchains Paths R AN
S i General * | Configure the locations where various GNU Arm toolchains are installed. The values are stored within Eclipse. Unless redefined more r that provi
Perspective > C/C++ specifically, they are used for all projects in all workspaces.
et ot Changelog Only the toolchains in use by projects in the workspace are shown on this page.
E¥| > Docker Syt s Gy Trss s diehs
Help) e .
el Updat Toolchain used by the following projects: ADC12_AnalogWindowWstchdog
nstallfUpdate
Toalchain name: xPack GNU Arm Embedded GCC (arm-none-eabi-gec) [5)
Language Servers
Library Heger Toolchain folder: | C\Arm Too\LLVM-ET-Arm-19.1.1-Windows-x86 64\bin B Eores *Pack...
- 7
foliallemn) Solchanetpatt On macOS use Shift+Cmd+"." to show the hidden folders while browsing the file system. xpm uses a .content folder to store the binaries.
Global Buld Tools Path
S1el = preferences o x
Gle|
Glof [type fiter text Global Build Tools Path S v §
Glol
aid ? Generdl * | The locations where various Eclipse Embedded CDT build tools are installed. Unless defined more specifically, they are used for all
wal > crces projects in all workspaces
Ch: L
wel o E'fe 29 Build tools folder: |C:\Arm Toohxpack-windows-build-tools-4.4.1\bin | erowse.. xPack...
ocker
ﬁ‘) Help
w° Install/Update
"9 > Lenguage Servers
Library Hover
A
@ o ~ o
Global Arm Toolchains Paths
Global Build Tools Path
Global QpenOCD Path
Global pyOCD Path
Global QEMU Paths
Global RISC-V Toolchains Paths
Global SEGGER J-Link Path
Warkspace Arm Toolchains Paths
Workspace Build Tools Path
Workspace OpenOCD Path
[#] Problems] Tasks Workspace pyQCD Path
Eclipse Embedded CDT g Workspace QEMU Paths . Restore Defaults Apply
2026-81-23 11:87:28 R e
Extracting devices &| _ .
Loading repos summary (2) v 25 @ Apply and Close Cancel
Parsing cached conter

4.3.2

pyOCD Adaptation

In order to facilitate users to perform program download and simulation operations on G32R430

www.geehy.com

Page 12

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

in an open source environment, the G32R430 series MCU needs to support pyocd.

Currently, the Eclipse example in the SDK uses pyOCD 0.36

(https://github.com/pyocd/pyOCD/releases/tag/v0.36.0) during the download process. This
version does not support M52 core chips and G32R430 chips. It is necessary to modify its
source code to complete support.

1. The main file to be modified to add M52 core support in pyOCD is:

a) pyocd\coresight\icomponent_ids.py, add the following under the class
Cmplnfo(NamedTuple):

Designer |Component Class |Part |Type |Archid |Name |Product |Factory

(ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x31, 0x0a31) : CmplInfo(MTB', 'Star-MC2', None)
(ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x43, 0x1a01) : CmplInfo('ITM', 'Star-MC2', ITM.factory)
(ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x00, 0x1a02) : Cmplnfo(DWT', 'Star-MC2', DWTv2.factory),
(ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x00, 0x1a03) : Cmplnfo('BPU', 'Star-MC2', FPB.factory),
(ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x14, 0x1a14) : CmplInfo('CTI', 'Star-MC2', None),
(ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x00, 0x2a04) : Cmplnfo('SCS', 'Star-MC2', CortexM_v8M .factory),
(ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x13, 0x4a13) : CmplInfo('ETM', 'Star-MC2', None)
(ARM_CHINA_ID, CORESIGHT_CLASS, 0x132, 0x11, 0) : Cmplnfo('TPIU', 'Star-MC2', TPIU factory)

Figure 18 Modified component_ids.py

94 ## Map from (designer, class, part, devtype, archid) to component name, product name, and factory.
S COMPONENT_MAP: Dict[Tuplelint, int, Optional[int], Optionallint], int], CmpInfo] = {
6 # Archid-only entries
7 # Designer |Component Class |Part |Type |Archid | Name | Product | Factory
(ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x31, 0x0a31) : CmpInfo('MTB', 'Star-MC2', None),
(ARM CHINA ID, CORESIGHT_CLASS, 0xD24, 0x43, 0xla0l) : CmpInfo('ITM', 'Star-MC2', ITM.factory).
100 (ARM CHINA ID, CORESIGHT CLASS, 0xD24, 0x00, 0x1a02) : CmpInfo('DWT', 'Star-MC2', DWTv2.factory 0o
101 (ARM CHINA ID, CORESIGHT_CLASS, 0xD24, 0x00, 0xl1a03) : CmpInfo('BFU', 'Star-MC2', FPB.factory '
102 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x14, 0xlal4) : CmpInfo('CTI', 'Star-Mc2', None Y,
103 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x00, 0x2a04) : CmpInfo('sCS', 'Star-MC2', CortexM v8M.factory),
104 (ARM CHINA ID, CORESIGHT CLASS, 0xD24, 0x13, 0x4al3) : CmpInfo('ETM', 'Star-MC2', None),
105 (ARM CHINA ID, CORESIGHT CLASS, 0x132, 0Oxl1l, 0) : CmpInfo('TPIU', 'Star-Mc2', TPIU.factory),
1 # Designer |Component Class |Part |Type |Archid | Name | Product | Factory
107 (ARM_ID, CORESIGHT CLASS, None, None, 0x0a00) : CmpInfo('RASvl', None, None
108 (ARM ID, CORESIGHT_CLASS, None, None, 0xla0l) : CmpInfo('ITMv2', None, ITM. factory ’
1 (ARM_TD, CORESIGHT_CLASS, None, None, 0x1a02) : CmpInfo ('DWTvZ', None, DWTvZ. factory '

b) pyocd\coresight\core_ids.py:

1) Add core ID under # CPUID PARTNO values

ARM_China_StarMC2 = 0xD24

2) Add core name under CORE_TYPE_NAME: Dict[Tuplel[int, int], str]

www.geehy.com Page 13

http://www.geehy.com/
https://github.com/pyocd/pyOCD/releases/tag/v0.36.0

Document No.: AN1166

(CPUID_ARM_CHINA, ARM_China_StarMC2): "Star-MC2",

42 | ARM China_StarMC2

Figure 19 Modified core_ids.py

ARM CortexM55 = 0xD22
ARM CortexM85 = 0xD23

ARM China StarMCl = 0x132

0xD24

pylint:

enable=invalid name

@brief User-friendly names for core types.
CORE_TYPE_NAME: Dict[Tuple[int, int], str] = {

(CDUID_ARM,
(CPUID_ARM,
(CPUID_ARM,
(CPUID_ARM,
(CPUID_ARM,
(CPUID_ARM,
(CPUID_ARM,
(CPUID_ARM,
(CDUID_ARM,
(CDUID_ARM,
(CPUID_ARM,
(CPUID_ARM,
(CPUID_ARM,
(CPUID ARM CHINA,

ARM SCO00): "SecurCore SCO00",
ARM_sSC300): "SecurCore SC300",
ARM CortexM0): "Cortex-MO",
ARM_CortexMl): "Cortex-M1",

ARM CortexM3): "Cortex-M3",

ARM CortexM4): "Cortex-M4",

ARM CortexM7): "Cortex-M7",

ARM CortexMOp) : "Cortex-MO+",

ARM CortexM23): "Cortex-M23",

ARM CortexM33): "Cortex-M33",
ARM_CortexM35P): "Cortex-M35P",

ARM CortexMSS) : "Cortex-M55",
ARM_CortexM85) : "Cortex-M85",

ARM China StarMcl): "Star-Mcl™

(CPUID_ARM CHINA,

ARM China StarMC2): "Star-MC2",

2. Add G32R430 chip support.

a)

b)

Add g32r430 download algorithm support file: target_ G32R430xx.py in
pyocd\target\builtin. This file has been added to
SDK/Package/pyOCD/target G32R430xx.py.

Add g32r430 support, and add the following to pyocd\target\builtin__init__.py:

from . import target_ G32R430xx

'g32r430xb": target_G32R430xx.G32R430xB,

Figure 20 Modified __init__.py

from import target Air001

from import target Air32F103=xx
from import target G3ZR501xx
from 1mport target G32R430xx]

L L L |

target Air00l1.air001,

target_ Alr32F103xx.
target ARir32F103xx.
target Air32F103xx.
target Air32F103xx.
target Air32F103xx.
target G32R501xx.G32R501D=xx,
target G32R501xx.G32R501xx,

Air3Z2Fl03xB,
Air32rlo3=xc,
Air32F103xP,

AIir3ZF103=xE,
Air3ZFlo3xc,

target G32R430xx.G32R430xB, |

4.3.3 Example Usage

1. Start Eclipse 4.35.

2. Click "File" -> "import ..." -> "General" ->

www.geehy.com

"Existing Project into Workspace"

in the menu bar.

Page 14

http://www.geehy.com/

Document No.: AN1166 gmcguueaby

Figure 21 Import project 1

& impor o
Select \“
Create new projects from an archive file or directory. H

Select an import wizard:

type filter text |

Iv = General |° -~

> Archive File
=% Existing Projects into Workspacelo
[} File System

[T} Preferences
[} Projects from Folder or Archive
= C/C++
= Git
(= Install
= Oomph
(= RPM
= Run/Debug

[
| @' < Back Next = kP Finish

Cancel

3. Click "Select root directory", browse to the path where you saved the SDK project files,

select the corresponding project folder, and then click "Finish".

Figure 22 Import project 2

S Import [m] *®
Import Projects —
Select a directory to search for existing Eclipse projects. & A.’.
@ select ract directory: \G33R430\632R430 ODL DK || Browse.. |
O Select archive file: Browse...
Projects: o
[ADC12_AnalogWindowWatchdog (¢ G32R430\G32R4] Select All
Desclect Al
Refresh
< >
Options.
[JSearch for nested projects
[Copy projects into workspace
[Jclose newly imported projects upon completion
[JHide projects that already exist in the workspace
Working sets
[JAdd project to working sets. New...
Select...
@ o | Concel

Note: Please complete the LLVM compilation configuration in section 4.3.1 before the above steps.

www.geehy.com Page 15

http://www.geehy.com/

Document No.: AN1166 SEMIQDU@[OR y

4.3.4 Compile the Program

After opening the project, you can view the project structure in the Eclipse Project Explorer.
Check whether the project target (Target) configuration is what you need. Click the "Build"
compilation button and wait for the project compilation to complete. If the compilation is normal,
the Console will display no errors and warnings.

Figure 23 Compiling Example Operation under Eclipse

File Edit Source F{efactorAate Search Project Run Window Help
I='<iv |@v%vu'ﬁ ﬂvﬁjv é‘”v@."v ﬁ\vo
5 Project Explorer x [¥ 1G32R430 I —ﬁ| i = 8

v s = ADC12_AnalogWindowWatchdog (in Eclipse) |
[l Includes
n Application
2y Board

Gp CMSIS

[z DDL_Driver

[y Document

Figure 24 Successfully Compiled Example under Eclipse

1] Problems 4] Tasks | B) Consale ® gproperties X448 P =

CDT Build Console [ADC12_AnalogWindowWatchdag]

Invoking: GNU Arm Cross Print Size
1lvm-size --format=berkeley "ADC12 AnalogWindowWatchdog.elf"

text data bss dec hex filename

13883 44 4348 18692 4384 ADC12 AnalogWindowWatchdog.elf
Finished building: ADC12_AnalogWindowWatchdog.siz

1lvm-objcepy -0 binary "ADC12_AnalogWindowWatchdog.elf" "ADC12_Analogiindowilatchdog.bin”; 1lvm-chjdump -D "ADC12_Analogiindowiatchdog.elf” > "ADC12_Analoghindowilatchdog. dump™

10:56:28 Build Finished. @ errors, @ warnings. (took 11s.249ms)

4.3.5 Download and Debug the Program

Downloading and debugging programs under Eclipse requires configuring the GDB service.
Please configure the debugging tab according to the following steps.

Note: The following steps need to be performed after completing the python, pyOCD and pyOCD's G32R430 chip
support. Refer to chapters 4.3.2 and chapter 5 for environment deployment.

1. Add pyOCD Debugging configuration
1) Left-click on the Debug icon to display the Debug configuration.
2) Select "Debug Configurations..." to display.
3) In the new window, select "GDB PyOCD Debugging" and right-click.

4) Select "New Configuration" to configure the simulation.

www.geehy.com Page 16

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

Figure 25 Add pyOCD Debugging Configuration

s - -0 -a-imo 5~ Bi%iv[SiH-F-oe-o-
(no launch history)

| Debug As ¥

l Debug Configurations...

Organize Favorites...

= Debug Configurations

Create, manage, and run configurations

N | =R Configure launch settings from this dial¢

type filter text | | - Press the 'New Configuration' butt

[E] C/C++ Application

[E] CfC++ Attach to Application
[E] C/C++ Container Launcher

[E] CfC++ Postmortem Debugger

=

- Press the 'New Prototype' button 1

- Press the 'Export’ button to expor

- Press the 'Duplicate’ button to cop

[€] C/C++ Remote Application 3 - Press the 'Delete’ button to remov
Cif C/C++ Unit
[5] GDB Hardware Debugging [? - Press the 'Filter’ button to configui
[€] GDB OpenOCD Debugginp [L| - Select launch configuration(s) and
[+ 51 6DB PyOCD Das p .
TeTADCTS Ar"} E— nfiguration 'guration(s) and
[E] GDB QEM-U az || New Prototype I)nﬁguration(s] and

2. Configure the Main tab
1) Name the current simulation configuration at the top.

2) Select "Browse..." and select the project corresponding to the current simulation
configuration.

3) Select the corresponding simulation elf file, for example:
G32R430\ADC12_AnalogWindowWatchdog.elf. The example uses a relative path
relative to the project file, which supports absolute paths.

Figure 26 Configure Main

o :
iFeEX B Y- Name: | ADC12 AnalogWindowWatchdog G32R430) |
type filter text | Main| %5 Debugger | B+ Startup | B Source | [C] Common| 2, SVD Path
[E] C/C++ Application o Project e
[E] C/C++ Attach to Application
[E] C/C++ Container Launcher |ADC12_Ana|ogW|ndowWatchdog |I Browse...]
[E] C/C++ Postmortem Debugger C/C++ Application: o
[€] C/C++ Remote Application [|G32R430\ADC12_Ana|ogWindowWatchdog.elf | |
Cif C/C++ Unit
[£] GDB Hardware Debugging Variables... Search Project... Browse...
[£] GDB OpenOCD Debugging Build (if required) before launching
~ [£] GDB PyOCD Debugging
f5] ADC12_AnalogWindowWatch Build Configuration: | Select Automatically i
[c] GDB QEMU aarch64 Debugging (O Enable auto build (O Disable auto build

[£] GDB QEMU arm Debugging

(®) Use workspace settings Configure Workspace Settings...
=1 GNR OFMLI anuarmerlinse Neh

3. Configure Debugger tab

www.geehy.com Page 17

http://www.geehy.com/

Document No.: AN1166 ssmlgnugrcm y

1) Select the Geehy-Link emulator used. The characters in parentheses are the emulator
serial number.

2) Select the corresponding chip, for example: Geehy >G32R430xB(g32r430xb)

3) Select the GDB service. It is recommended to use arm-gnu-toolchain-
14.2.rel1\bin\arm-none-eabi-gdb.exe provided by Arm.

Figure 27 Configure Debugger

MName: |ADC1 2_AnalogWindowWatchdog G32R430

Main | % Debugger| b+ Startup B~ Source | [[] Common| &, SVD Path
pyOQCD Setup -
Start pyOCD locally

Executable path: |${Pyocdpath}f${pyocd_executab|e} Browse.. | Variables...

Actual executable: |C:\U5er5\apex1 28865\AppData\Roaming\Python\Python310\Scripts/pyocd.exe |

(to change it use the global or workspace preferences pages or the project properties page)

GDB port: 3333 [] Allocate console for pyOCD
Semihosting port:] Allocate console for semihosting o

Debug probe: IGeehy CMSIS-DAP WinUSB (002500613300000256313842000258) VI Refresh
Default target: Generic = CoreSightTarget (cortex_t =

Override target: l Geehy = G32R430xB (g32r430xb) - v|
Bus speed: |1DOOOOO ~| Hz

Connect mode: Halt ~

Reset type: Default ~

Flash mode: Sector erase ~ Smart flash

Halt at hard fault [Step into interrupts

Enable semihosting [JUse GDB syscalls for semihosting

Other options:

GDB Client Setup e

Executable name: |'m Tool\GNU Arm Embedded Toolchain\14.2\bin\arm-none-eabi-gdb.exe || Browse... | Variables...

Actual executable: |C:\Arm Tool\GNU Arm Embedded Toolchain\14.2\bin\arm-none-eabi-gdb.exe |
T

4. Configure the SVD file tab. The SVD file provides users with a convenient way to view the
peripheral register contents of the MCU. For G32R430, please select
Package\SVD\G32R430xx.svd in its SDK.

Figure 28 Configure SVD File Tab

Name: |ADC1 2_AnalogWindowWatchdog G32R430

Main | %% Debugger | B+ Startup | % Source |[] Comman | %, SVD Path
SVD file (used by the peripheral registers viewer; may be .svd.zip)

File path: | l\Package\SVD\G32R430x.svd Browse... | Variables...

5. Finally, click the "Apply" button in the lower right corner of the tab to apply all configuration
items.

6. Launch download or debugging. The first time, you need to click the "Debug" button in the

www.geehy.com Page 18

http://www.geehy.com/

Document No.: AN1166

lower right corner of the tab to simulate. Subsequently, it can be done through the
Debugger button in the toolbar.

Figure 29 Launch Download or Debugging

\ Window Help

Frit-Q0 - -Q@-®c F-{d REP O LiHFH 0P|
[1 Apci2_AnalogWindowWatchdog G32R430 o %
DL sD Debug As >
Debug Configurations...
Organize Favorites...
CEPEX BY- Name: |ADC12_AnalogWindowWatchdog G32R430 |
* Mainl %5 Debugger | B+ Startup | k- Sour:e‘] Common | &, SVD Path
C++ Container Launcher ~ s
C++ Postmortem Debugger
C++ Remote Application [ADC12_ AnalogWindowWatchdag Browse...
C++ Unit C/C++ Application:
98 Hardware Debugging ‘G32R4SO\ADC1 2_AnalogWindowWatchdog.elf
B OpenOCD Debugging
B PyOCD Debugging Variables... Search Project... Browse...
ADC12_AnalagWindowWatchdog G2 Build (if required) before launching
JB QEMU aarch64 Debugging
Y8 QEMU arm Debugging Build Configuration: | Select Automatically -
' QEMU gnuarmeclipse Debugging O Enable auto build O Disable auto build
%8 QEMU riscv32 Debugging Ol e e A e
B QEMU riscv64 Debugging
B SEGGER J-Link Debugging
unch Group
v
< > "
Revert A
Filter matched 17 of 17 items o HE
® =1 =

7. Debugging successful. Please use the debug button in the toolbar to control the program.

Figure 30 Debugging Successfully

AN - ADC12_AnalogWindow'Wa DE - [} X
File Edit Source Refactor Mavigate Search Project Run Window Help o
il B H-0-@- @5 §-{JeQiv|minmnzensar S |
P rH-odorD | Q | B
%5 Debug X [{5 Project Exp... 8 [d maine X = 0 ww=v ®%p &g Zp x = 0O
exlp i ® ° ~ cHe &
= 61
~ [£] ADC12_AnalogWindowWatchdog G 62 int main(void) Peripheral Address 2
~ 2 ADC12_AnalogWindowWatchdog 63 { %, ADC1 0x40020C00
v @ Thread #1 1 (Thread) (Suspenc . 5% /* USART init structure */
I:I.(F)_ . . E 65 DDL_USART_InitTypeDef USART_InitStruct = {@U}; O & apc2 Rei0021000
= main() at main.c:68 0x80008 66 %, ADC3 040021400
s pyocd.exe 67 /* Configure system clock */], BAKPR 0x40003830
s arm-none-eabi-gdb.exe 68 DDL_sysClktonfig(); O %, comp 0x40003400
= - 2] 1]
»i Semihosting 78 /* Configure interrupt group 4: 4-bit preemptive priori [= DAC1 0x40002C00
71 DDL_NVIC_ConfigPriorityGroup(DDL_NVIC_PRIORITY_GROUP_4) 0%, DAc2 0400032000
72 =
z P—] %, DBGMCU 0x40005800
74 USART InitStruct.BaudRate = 115288U; 0%, DMA 0x40020000
75 USART_InitStruct.DataWidth = DDL_USART_DATAWI O, EINT 0x40002800
76 USART_InitStruct.StopBits = DDL_USART_STOPE] 0800
77 USART_InitStruct.Parity = DDL_USART_PARITY O E‘- NS 023002
78 USART_InitStruct.TransferDirection = DDL_USART_DIREC] 0% GPIO 0x40021800
79 USART_InitStruct.HardwareFlowControl = DDL_USART_HWCONT <l ot S
30 USART_InitStruct.OverSampling = DDL_USART_OVERS/
81 BOARD_COMInit(CoM2, RUSART InitStruct);
]2
www.geehy.com Page 19

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

5 pyOCD Installation
5.1 Windows

5.1.1 Install Python

pyOCD support requires a Python environment. Please go to the official Python website
(https://www.python.org) to download the latest Python installation package.

Note: After installation, ensure that Python is added to the system's PATH environment variable so that it can be
used in the command line.
Verification: Use the Win+R keys, enter CMD, and enter "python" in the command line window,
then press Enter. The installed Python version number and other information will be displayed,
and you will enter the Python interactive command line (REPL). To exit, enter exit() or quit(),
and then press Enter.

Figure 31 Python Installation Verification

/.1929 64 bit (AMD64)] on win32

5.1.2 Install pyOCD

pyOCD is a Python component package that supports online installation (online installation is
recommended because there are different dependency packages for online installation).

The installation method is as follows:

1. Use the pip command "pip install pyocd==0.36" to install version 0.36 of pyOCD:

Figure 32 Install pyOCD

C:\Usersh »pip install pyocd==86.36

Note: After installation, please add the installation path of pyOCD to the system's PATH environment variable for
command-line usage. For example: C:\Users\Geehy\AppData\Local\Programs\Python\Python313\Scripts

2. To verify the installation result, use Win+R keys, enter CMD, and enter the following in the
command line window: pyocd -h, which will display command help.

www.geehy.com Page 20

http://www.geehy.com/
https://www.python.org/

Document No.: AN1166

Figure 33 pyOCD Installation Verification

cd -h
[--help-options]
'wOCD debug tools for Arm Cortex device
pptions:
-h, --help

-V, --version how ‘s we numb and exit

__Help-DpIiDHE

5.2 Ubuntu
5.2.1 Install Python

1. Ubuntu generally comes with Python by default. You can enter the following commands in
the terminal to query the Python and pip versions.

python --version

2. If Python or pip is not installed, use the following commands to install them:

sudo apt update

sudo apt install python3 python3-pip

5.2.2 python3-venv

Some Ubuntu-native Python3 environments are externally managed, making it impossible to
directly use pip to install packages in the global environment. To avoid this issue, you can
directly use Python's built-in venv module to create a virtual environment.

1. Use the following command to install the python3-venv package:

sudo apt install python3-venv

2. Use the following command to create a virtual environment (assuming you name the virtual

environment venv):

python3 -m venv venv

3. Use the following command to activate the virtual environment:

® Activate the virtual environment to install packages within it.

www.geehy.com Page 21

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

source venv/bin/activate

® |f you want to exit the virtual environment later, you can use the following command:

deactivate

5.2.3 Install pyOCD

1. Inthe activated virtual environment, use pip to install pyOCD:

pip install pyocd==0.36

2. Verify the installation result

pyocd --version

3. Query the pyOCD installation location (for subsequent modification of the pyOCD source
code)

pip show pyocd

5.2.4 pyOCD's USB Permissions

If pyOCD cannot access the debugger under a normal user, consider adding appropriate
permissions to the current user. Use udev rules to ensure that you can access USB devices
without using sudo. The steps are as follows:

1. Create a new rules file. Execute the following command in the terminal to create a new
udev rules file (for example, name it 99-pyocd.rules).

sudo nano /etc/udev/rules.d/99-pyocd.rules

2. Add the following content to the file (The Geehy-Link Device ID is 314B)

SUBSYSTEM=="usb", ATTR{idVendor}=="314b", MODE="0666"

In the nano editor, press Ctrl + O to save the file, and then press Enter to confirm. Then press
Ctrl + X to exit the editor.

3. After saving the file, reload the udev rules.

www.geehy.com Page 22

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

sudo udevadm control --reload-rules

sudo udevadm trigger

4. Verify that pyOCD can correctly recognize Geehy-Link.

pyocd list

Figure 34 Emulator Serial Number Connected to Ubuntu

1S pyocd list
Unique ID

5.3 Replace Modified Item Content
To support G32R430, refer to section 4.3.2 to modify the downloaded pyOCD content.

To verify whether G32R430 support has been successfully added, use Win+R, enter CMD, and
enter the following in the command line window: pyocd list --targets. This will display all chips.
Check whether "g32r430xb" is in the supported chips.

Figure 35 List of Supported Chips

B FEEC\Windows\system32\cmd.exe _ O x
builtin
builtin
builtin
builtin
builtin
builtin

builtin
builtin
builtin
builtin
builtin

builtin
builtin

54 Command Line Usage

pyOCD supports using the CMD command line. Refer to the following steps for usage (confirm
that pyOCD has been added to PATH before use).

1. Connect the board or emulator to the chip and connect to the PC.

2. Start cmd in the working directory and enter: pyocd commander -t g32r430xb, then you can
enter relevant instructions in the command line window to perform the corresponding

www.geehy.com Page 23

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

operations.

Figure 36 pyOCD commander

5.5 Integration with Eclipse

Currently, using Eclipse+pyocd has version requirements for Eclipse. It is recommended to use
Eclipse version 202503.

In addition, it is recommended to configure the pyOCD path globally in Eclipse (it has been
found that eclipse may have exceptions in getting PATH on some computers). The steps are as
follows:

1. Right-click on "Windows" in the menu bar to display all configurations.
2. Select "Preference" in the displayed configuration.

3. In the new window, open the sub-options under the "MCU" option.

4. Select the sub-option "Global pyOCD Path".

5. Select the corresponding pyocd.exe directory on the right.

6. Finally, click "Apply and Close".

Figure 37 Global pyOCD Path Steps 1-2

[wion] @

MNew Window |
Editor > |
Appearance *
Show View -]
Perspective -]
Mavigation -]

Preferences 9

www.geehy.com Page 24

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

Figure 38 Global pyOCD Path Steps 3-6

S Preferences O x
type filter text Global pyOCD Path P §
General ~ Configure the location where pyOCD is installed. The values are stored within Eclipse. Unless redefined more
C/C++ specifically, they are used for all projects in all workspaces.
Changelog
Docker After installing pyOCD updates, restart Eclipse for the defaults to be re-evaluated and use the Restore Defal
Help button to configure the new location.
Install/Update Executable: |pyocd.e'xe

Language Servers

. Folder: | \AppData\RDaming\P_!,rlhon\P_!(lhonﬂO\Scripts|
Library Hover

Global Arm Toolchains Pat
Global Build Tools Path
Global OpenOCD Path o
Global pyOCD Path

Global QEMU Paths
Global RISC-V Toolchains |
Global SEGGER J-Link Path

Workspace Arm Toolchain

xPat

Workspace Build Tools Pa
Workspace OpenOCD Patl
Workspace pyOCD Path Restore Defaults Apy

Winrkenara OFMI| Bathe ¥
> < >

@ I@. IQ. @ Apply and Close Cancel

<

www.geehy.com Page 25

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

6

6.1

About Linker Script

A linker script is a configuration file that determines the placement and structure of various
memory segments of a program. In embedded development, it is used to map compiled object
code, constants, global variables, and interrupt vectors to the MCU's physical memory areas such
as Flash and RAM. This section introduces the storage locations, corresponding memory
structures, and common example memory configuration files for the G32R430 series across three
development environments: MDK, IAR, and Eclipse (gcc). This will help you select an appropriate
placement strategy for your project and understand the roles of subsequent fields and sections.

Basic Information of Linker Script

® Storage locations

MDK: Libraries\Device\Geehy\G32R4xx\Source\arm
IAR: Libraries\Device\Geehy\G32R4xx\Source\iar
GCC: Libraries\Device\Geehy\G32R4xx\Source\gcc
® Chip memory structure (G32R430xB)

Flash: 128 KB

DTCM RAM: 16 KB

ITCM RAM: 32 KB

® Description for example memory configuration files

g32r430xb_flash.sct/icf/ld: The program runs in Flash, the stack is located in DTCM RAM, and
the ITCM RAM space is unused.

g32r430xb_itcm_ram.sct/icf/ld: The program runs in ITCM RAM, the stack is located in DTCM
RAM, and the Flash space is unused.

g32r430xb_flash_option.ld: The program runs in Flash, the stack is located in DTCM RAM, and
the ITCM RAM space is unused. It also includes the Option Byte configuration area and is used
for the "\Examples\Board_G32R430_Tiny\FLASH\FLASH_OPT" program.

Note: The above configurations are used for performance comparison between different storage areas and optimization
for specific scenarios. Please select the appropriate script based on the project requirements and resource constraints.

6.2

Field Description

Several fields are defined in the g32r430.h header file. These fields correspond to specific field
definitions in the linker scripts. Common fields and their meanings are as follows:

1. SECTION_ITCM_INSTRUCTION: ITCM instruction code section
2. SECTION_ITCM_RAMFUNC: Function section in ITCM RAM (functions executed in RAM)

3. SECTION_DTCM_DATA: DTCM data section

www.geehy.com Page 26

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

4. SECTION_DTCM_BSS: DTCM BSS (uninitialized global/static variables) section

5. SECTION_RAM_VEC: The section containing the interrupt vector table, usually placed in
DTCM RAM. Users can modify the definition location in the linker script to modify its storage
location.

6.3 How to Specify Variable/Function Storage Area

By placing variables and functions in different memory areas, better startup time, execution
efficiency, and memory utilization for different application scenarios can be obtained. This section
provides commonly used partitions and corresponding code examples, facilitating quick
placement of target areas in practical projects.

Example objective:

® Place the data sensitive to startup time and execution speed into DTCM RAM to obtain lower
access latency.

Note: The RAM memory addresses accessed by DMA must be located in DTCM RAM.
SECTION_DTCM_DATA volatile uint32_t g_fastConfigFlag = 0;

® Place functions sensitive to startup time or requiring fast execution into the ITCM area
(instruction area/RAMFUNC area) to improve startup and execution efficiency.

SECTION_ITCM_RAMFUNC void fast_filter(uint8_t *data, size_t len)
{

}
Or

SECTION_ITCM_INSTRUCTION void fast_filter(uint8_t *data, size_t len)
{

}

www.geehy.com Page 27

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

7

7.1

7.2

7.3

ATAN2 Libraries

To meet the requirements for angle calculation in certain application scenarios, the G32R430
MCU provides an ATAN2 library, which can quickly calculate the angle value of the given
coordinates (nX, nY). This function has wide application value in such fields as motor control and
trajectory planning.

ATAN2 Library File Structure

Library files for different compilers and precision versions are provided in the "Libraries/ATAN2"
directory of SDK, mainly including:

® g32r430_ATANZ2_high_resolution_ACS6.lib

® g32r430_ATANZ2_low_resolution_AC6.lib

® g32r430_ATANZ2_high_resolution_ICC.a

® g32r430_ATANZ2_low_resolution_ICC.a

Wherein:

® "AC6" indicates the library file is suitable for the MDK (AC6 compiler) environment.

® "ICC" indicates the library file is suitable for the IAR (ICC compiler) environment.

® "high_resolution" and "low_resolution" represent different precision implementations. Users
can select the appropriate library based on their application requirements.

Function Prototype and Description

The ATANZ2 function allows users to calculate the angle on a two-dimensional plane for given
coordinates by specifying the precision level. The specific prototype is as follows:

int32_t ATAN2(int32_t nX, int32_t nY, int32_t nPrecisionLevel);
® Parameter description:

- nX, nY: Represent the X and Y coordinates of the point to be calculated (entered in Q32
format), respectively.

- nPrecisionLevel: Calculated precision level, within the range of [1, 8]. It is recommended
touse 6, 7, or 8;

® Returned value:

- Returns the angle value within the range of (-, 1] in Q31 format. The origin (0, 0) is a
special case. The return result requires the user to handle or judge based on the
application scenario.

Function Storage and Execution Location

The code section for the ATAN2 function is "atan2_instruction" by default. The address of this

section can be modified in the linker script (e.g., .sct or .icf files) or be mapped to the required
storage space. If there are specific performance or memory requirements, the linker script can
be adjusted according to the project requirements.

www.geehy.com Page 28

http://www.geehy.com/

Document No.: AN1166

7.4 Usage

1. Select the appropriate library file: Based on the compiler (MDK or IAR) and the requirements
for calculation precision (high/low_resolution), include the corresponding ".lib" or ".a" file in

the project's linker options.

2. Enable CDES3 support in the project:

® For MDK, enable support for CDE3 in the project settings.

Figure 39 Enabling CDE3 Support for C Code in MDK

Preprocessor Symbols

Device | Target | Output | Listing | User 1

| Linker | Debuz | Utilities|

Define: |G32R-|341 G32R430_TINY USE_FULL_DDL_DRIVER

Undefine |

Language / Code Generation

I¥ Link-Time Optimization
™ Split Load and Store Muttiple
W One ELF Section per Function

[™ Plain Char is Signed

| Short enums/wchar

[Read-Only Position Independent [use RTTI
[Read-Write Position Independent [Mo Auto Includes

Paths

I™ Execute-only Code Wamings: |ACSdike Wamings v Language C: |c99 -
Optimization: |00 +| [T Tum Wamings into Emors Language C++: ’m

Include |\ NG A Libranes G32R4e_DDL_Drivernclude:. 5. Mlibraies \CMS1S Core\include . D

Misc

Controls |-rncpu =cortex-m52+nomve+nofp

control |float-abi-soft -
string

Compiler |.xc 5td=c99 +arget=am-am-none-eabi mcpu=FP_MVE_REQUIRES_DP_FPU+pachti+cdecp3 -

-~

W

| 0 ﬂ Cancel || Defaults |

® ForlAR, enable the support for corresponding extended instruction set of CDE3 in the project

options' compilation settings.

Figure 40 Enabling CDE3 Support for C Code in IAR

Options...

Make
Compile
Rebuild All

Clean

C-STAT Static Analysis

Stop Build

Add

Remove

Rename...

Version Control System >

Open Containing Folder...

3. Include the ATANZ2 header file in the project:

Categony:

General Options
Static Analysis
Runtime Checking

C/C++ Compiler

Assembler

Output Converter

Custom Build

Linker

Build Actions

Debugger
Simulator
CADL
CMSLS DAP
E2/E2Lite
GDB Server

Options for node "ATANZ_Math”

~

E
3

[Multifile Compiation
Discard Unused Publics

language 1 language2 Code

List Preprocessor Diagnostics

4
[AUse command line options

Command linegptions: (one per

Optimizations _ Qutput

Encodings

Factory Seftings

Extra Options

® Open the project settings and ensure that the "Libraries\ATAN2" directory has been added

to the Include path.

® Add the relevant header file reference at the top of the source file that needs to call the

ATANZ2 function.

Note: For example programs, please refer to:

G32R430_DDL_SDK_Vx.x.x\Examples\Board_G32R430_Tiny\ATAN2\ATAN2_Math\

www.geehy.com

Page 29

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

8 Revision History

Table 1 Document Revision History

Date Version Revision History
November 2025 1.0 . New
. 2.1 updated the board picture to V1.2 and deleted the
December 2025 1.1
operational content required for the V1.1 version.
. Added Section 4.3: Instructions for running example
programs in the Eclipse environment.
. Added Section 5: pyOCD installation instructions and how to
January 2026 1.2

add support for the G32R430 chip.
. Section 6: Added descriptions of linker scripts for the gcc

environment.

www.geehy.com Page 30

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

Statement

This manual is prepared and published by Zhuhai Geehy Semiconductor Co., Ltd.
(hereinafter referred to as "Geehy"). The contents in this manual are protected by laws and
regulations of trademark, copyright and software copyright. Geehy reserves the right to correct
and modify this manual at any time. Please read this manual carefully before using the product.
Once you use the product, it means that you (hereinafter referred to as the "users") have known
and accepted all the contents of this manual. Users shall use the product in accordance with

relevant laws and regulations and the requirements of this manual.
1. Ownership of rights

This manual can only be used in combination with chip products and software products of
corresponding models provided by Geehy. Without the prior permission of Geehy, no unit or
individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this

manual for any reason or in any form.

The "Geehy" or "Geehy" words or graphics with "®" or "TM" in this manual are trademarks
of Geehy. Other product or service names displayed on Geehy products are the property of their

respective owners.
2. No intellectual property license
Geehy owns all rights, ownership and intellectual property rights involved in this manual.

Geehy shall not be deemed to grant the license or right of any intellectual property to users

explicitly or implicitly due to the sale and distribution of Geehy products and this manual.

If any third party’s products, services or intellectual property are involved in this manual,
Geehy shall not be deemed to authorize users to use the aforesaid third party’s products, services
or intellectual property, nor shall it be deemed to provide any form of guarantee for third-party
products, services, or intellectual property, including but not limited to any non-infringement
guarantee for third-party intellectual property, unless otherwise agreed in sales order or sales

contract of Geehy.
3. Version update

Users can obtain the latest manual of the corresponding products when ordering Geehy

www.geehy.com Page 31

http://www.geehy.com/

Document No.: AN1166 SEMICONDUCTOR y

products.

If the contents in this manual are inconsistent with Geehy products, the agreement in Geehy

sales order or sales contract shall prevail.
4. Information reliability

The relevant data in this manual are obtained from batch test by Geehy Laboratory or
cooperative third-party testing organization. However, clerical errors in correction or errors
caused by differences in testing environment are unavoidable. Therefore, users should
understand that Geehy does not bear any responsibility for such errors that may occur in this
manual. The relevant data in this manual are only used to guide users as performance parameter

reference and do not constitute Geehy's guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively
verify and test the applicability of Geehy products to confirm that Geehy products meet their own
needs, corresponding standards, safety or other reliability requirements. If losses are caused to
users due to the user's failure to fully verify and test Geehy products, Geehy will not bear any

responsibility.
5. Compliance requirements

Users shall abide by all applicable local laws and regulations when using this manual and
the matching Geehy products. Users shall understand that the products may be restricted by the
export, re-export or other laws of the countries of the product suppliers, Geehy, Geehy distributors
and users. Users (on behalf of itself, subsidiaries and affiliated enterprises) shall agree and
undertake to abide by all applicable laws and regulations on the export and re-export of Geehy

products and/or technologies and direct products.
6. Disclaimer

This manual is provided by Geehy on an "as is" basis. To the extent permitted by applicable
laws, Geehy does not provide any form of express or implied warranty, including without limitation

the warranty of product merchantability and applicability of specific purposes.

Geehy products are not designed, authorized, or guaranteed to be suitable for use as critical
components in military, life support, pollution control, or hazardous substance management
systems, nor are they designed, authorized, or guaranteed to be suitable for applications that
may cause injury, death, property, or environmental damage in case of product failure or

malfunction.

www.geehy.com Page 32

http://www.geehy.com/

Geehy

SEMICONDUCTOR

If the product is not labeled as "Automotive grade", it means it is not suitable for automotive
applications. If the user's application of the product is beyond the specifications, application fields,

and standards provided by Geehy, Geehy will assume no responsibility.

Users shall ensure that their application of the product complies with relevant standards, and
the requirements of functional safety, information security, and environmental standards. Users
are fully responsible for their selection and use of Geehy products. Geehy will bear no
responsibility for any disputes arising from the subsequent design and use of Geehy products by

users.
7. Limitation of liability

In any case, unless required by applicable laws or agreed in writing, Geehy and/or any third
party providing this manual and the products on an "as is" basis shall not be liable for damages,
including any general or special direct, indirect or collateral damages arising from the use or no
use of this manual and the products (including without limitation data loss or inaccuracy, or losses
suffered by users or third parties). This covers damage to personal safety, property, or

environment, for which Geehy will not be responsible.
8. Scope of application

The information in this manual replaces the information provided in all previous versions of

the manual.

©2026 Zhuhai Geehy Semiconductor Co., Ltd. All Rights Reserved

Geehy Semiconductor Co.,Ltd. % +86756 6299999 @ www.geehy.com &3 info@geehy.com

http://www.geehy.com/

	1 Introduction
	2 Basic Information of G32R430TinyBoard
	2.1 Introduction to Development Board Resources
	2.2 Precautions

	3 Introduction to SDK Directory Structure
	4 How to Run Examples
	4.1 Running Examples in Keil MDK
	4.1.1 Install the Chip Support
	4.1.2 Use an Example Program
	4.1.3 Compile the Program
	4.1.4 Download the Program
	4.1.5 Debug the Program

	4.2 Running Examples in IAR for Arm
	4.2.1 Install the Chip Support
	4.2.2 Use an Example Program
	4.2.3 Compile the Program
	4.2.4 Download the Program
	4.2.5 Debug the Program

	4.3 Running Examples in Eclipse
	4.3.1 Toolchain Installation
	4.3.2 pyOCD Adaptation
	4.3.3 Example Usage
	4.3.4 Compile the Program
	4.3.5 Download and Debug the Program

	5 pyOCD Installation
	5.1 Windows
	5.1.1 Install Python
	5.1.2 Install pyOCD

	5.2 Ubuntu
	5.2.1 Install Python
	5.2.2 python3-venv
	5.2.3 Install pyOCD
	5.2.4 pyOCD's USB Permissions

	5.3 Replace Modified Item Content
	5.4 Command Line Usage
	5.5 Integration with Eclipse

	6 About Linker Script
	6.1 Basic Information of Linker Script
	6.2 Field Description
	6.3 How to Specify Variable/Function Storage Area

	7 ATAN2 Libraries
	7.1 ATAN2 Library File Structure
	7.2 Function Prototype and Description
	7.3 Function Storage and Execution Location
	7.4 Usage

	8 Revision History

